



# Cost-Benefit Analysis of the Self-Generation Incentive Program (SGIP)

Staff Workshop California Energy Commission September 3, 2008

Philip Sheehy, PhD
Jeff Rosenfeld
Larry Waterland, PhD
TIAX LLC
20813 Stevens Creek Blvd., Suite 250
Cupertino, CA 95014-2107

- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments



| 1 | Overview of Project |
|---|---------------------|
|   |                     |

- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments



## Background, Team, and Scope

# **Background**

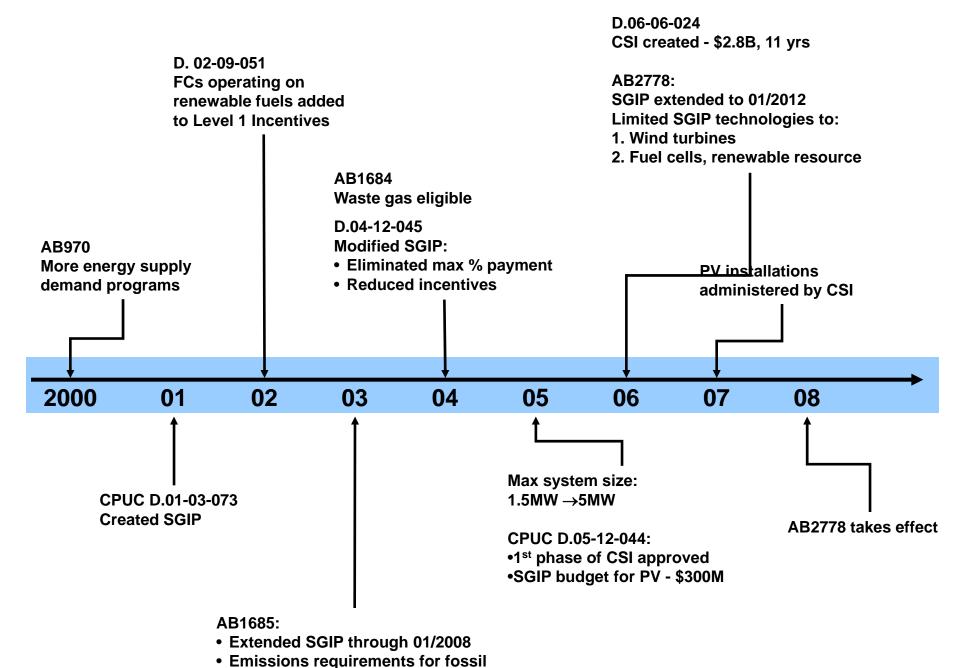
From Assembly Bill 2778:

"The bill would require the Energy Commission, on or before November 1, 2008, in consultation with the commission and the board, to evaluate the costs and benefits of providing ratepayer subsidies for renewable and fossil fuel 'ultraclean and low-emission distributed generation,' as defined, as part of the Energy Commission's integrated energy policy report."

#### **Team**

TIAX LLC (TIAX), Jack Faucett Associates (JFA), Rumla Inc. (Rumla), and Advent Consulting Associates (Advent)

# Scope


Cost-Benefit Analysis of SGIP, using data for systems installed between 2001 and 2006



| 1 | Ш | Overview | of Project |
|---|---|----------|------------|
|   |   |          |            |

- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments







fueled technologies

Timeline Modified from *SGIP: Program Administrator Comparative Assessment*, Summit Blue Consulting, 2007.

CBA of SGIP Overview of SGIP

Status of SGIP: 12/31/2006

| technology   | installations | fuel | installed capacity (MW) | incentive payment (\$M) |
|--------------|---------------|------|-------------------------|-------------------------|
| photovoltaic | 609           | n/a  | 81.1                    | 296.9                   |
| mioraturhina | 00            | NR   | 13.8                    |                         |
| microturbine | 98            | R    | 3.0                     | non-renewable<br>77.9   |
| gas turbine  | 3             | NR   | 11.6                    |                         |
| ICE          | 105           | NR   | 109.6                   | renewable<br>9.0        |
| ICE          | 185           | R    | 6.3                     | 0.0                     |
| fuel cell    | 0             | NR   | 5.8                     | 13.2                    |
| fuel cell    | 8             | R    | 0.8                     | 3.4                     |
| wind turbine | 2             | n/a  | 1.6                     | 2.6                     |
|              | total         | 905  | 233.6                   | 403                     |

NR-nonrenewable, R-renewable



Status of SGIP: 12/31/2006

| PA       | # projects | installed capacity (MW) |
|----------|------------|-------------------------|
| PG&E     | 439        | 105.1                   |
| SCE      | 244        | 46.2                    |
| SoCalGas | 146        | 55.5                    |
| CCSE     | 119        | 26.8                    |
| total    | 948        | 233.6                   |



- 1 Overview of Project
- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments



# A Note on Cost-Benefit Analysis ...

- Scope: Self-Generation Incentive Program
- •Standing: Whose costs and benefits are counted?
- Identify the benefits and costs
  - Make sure no double counting
- Define approach to quantify benefits and costs
- Time horizon

This study differs from a conventional CBA because we are analyzing an existing program, rather than determining if a program should or should not be funded based on cost-benefit grounds. Our analysis will provide the foundation to perform a forward-looking (or traditional) CBA that will help shape SGIP in the future to ensure that the program provides net benefits.



#### **Costs & Benefits**

Costs

Installed cost

Operation and Maintenance

Administration

Metering and Evaluation

**Benefits** 

**Environmental benefits** 

Macroeconomic benefits

Grid benefits



#### **Data Sources**

# **Program Administrators and IOUs**

- Basic SGIP facility data: technology type, fuel type, installed capacity, address, installed costs
- Project Cost Breakdown Worksheets
- Interconnection data: name of nearest substation, voltage of the utility interconnection line, maximum permissible line loading, annual maximum recorded line loads, transformer bank, bank loading, recorded bank loads

# Itron Inc.

- Metered data: electrical net generator output (ENGO), fuel use, and waste heat recovery
- Published impact evaluation reports and other requested data



# **Technical Performance, by technology**

Benefits are determined based on technology platform

- 1. Use data when you have it
- 2. When you don't have metered data, be smart



# **Photovoltaic Installations: SDG&E**





## ICEs, MTs, FCs, and GTs

Capacity factors are not location-dependent. We assume that the capacity factor for installation X is the same as installation Y for a given hour.

Installation Y is a composite of all installations that have metered data at any given time.



D0466

## Some ground rules ...

Benefits as described here are determined as avoided damage costs, not avoided control costs. Damage costs include 1) direct damages to humans, 2) indirect damages to humans via ecosystem degradation, and 3) indirect damages to humans via non-living systems

Benefits transfer: there are potential pitfalls that we can avoid

Everything will be in 2006 dollars (\$2006)



# Some ground rules (continued)

A note on discounting: 7% discount rate for private investment (e.g., operations and maintenance), declining discount rate (DDR) for environmental benefits (e.g., GHGs), starting at 3.5%

Pigou referred to exponential discounting on future welfare as a 'defective telescopic faculty'

Weitzman: "To think about the distant future in terms of standard discounting is to have an uneasy intuitive feeling that something is wrong, somewhere"

Standard discounting is contrary to sustainability



# Some ground rules (continued)

Environmental benefits are determined relative to a baseline: centralized power generation. More specifically, marginal power generation. Defined here as natural gas fired combined cycle combustion turbine (NG CCCT).

The GHG emissions are determined on a lifecycle basis, across all boundaries because climate change is a global problem.

Criteria pollutant emissions are determined on a California basis and account for pollutant offsets required for NOx and PM; air quality is a local/regional problem.



D0466

# Some ground rules (continued)

|           |         | n factors <sup>a</sup><br>CT, g/kWh) |                            |
|-----------|---------|--------------------------------------|----------------------------|
| pollutant | total   | California                           | \$/ton                     |
| VOC       | 5.0E-02 | 1.0E-03                              | 8871 <sup>b</sup>          |
| NOx       | 4.5E-02 | 4.5E-03                              | 3408 <sup>b,c</sup>        |
| NOX       | 4.36-02 | 4.3E-03                              | 19458 (as PM) <sup>c</sup> |
| CO        | 1.3E-01 | 6.3E-02                              |                            |
| SOx       | 7.8E-02 | 0                                    |                            |
| PM2.5     | 1.0E-02 | 6.2E-03                              | 638184 <sup>c</sup>        |
| GHGs      | 5       | 505                                  | 12 <sup>d</sup>            |

<sup>&</sup>lt;sup>a</sup>Full Fuel Cycle Assessment, Well to Tank Energy Inputs, Emissions, and Water Impacts, Consultant Report, TIAX LLC, CEC-600-2007-003, June 2007

<sup>&</sup>lt;sup>b</sup>California Strategy to Reduce Petroleum Dependence, Appendix A: Benefits of Reducing Demand for Gasoline and Diesel, Consultant Report, P600-03-005A1, Sept 2003

<sup>&</sup>lt;sup>c</sup>Emission Reduction Plan for Ports and Good Movement, Appendix A: Quantification of the Health Impacts and Economic Valuation of Air Pollution from Ports and Goods Movement in California, Mar 2006

<sup>&</sup>lt;sup>d</sup>Tol, RSJ. The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties, Energy Policy, 33 (2005), 2064-2074 [per metric ton]

- 1 Overview of Project
- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments



# Photovoltaic (PV): SDG&E only

|                    | total                | \$2,772,337             |
|--------------------|----------------------|-------------------------|
| GHGs               | 191 x10 <sup>3</sup> | \$1,614,534             |
| PM2.5              | 2.6                  | \$1,125,995             |
| NOx                | 1.9                  | \$29,283                |
| VOC                | 0.4                  | \$2,524                 |
| emission reduct    | tions, tons          | monetized value, \$2006 |
| MWh generated      | 378,413              |                         |
| installed capacity | 12 MW                |                         |
| installations      | 92                   |                         |

criteria pollutant emission reductions reported in short tons GHGs reported in metric tons



#### CBA of SGIP Results

# Microturbines (MTs)

| performance                      |               | S                 | DG&E           |                        |                |                      | All             |                          |
|----------------------------------|---------------|-------------------|----------------|------------------------|----------------|----------------------|-----------------|--------------------------|
| MWh generated                    |               | 1                 | 172,959        |                        | 1,872,100      |                      |                 |                          |
| MMBtu NG used                    |               | 1,                | 710,586        |                        | 23,391,591     |                      |                 |                          |
| CHP, MWh saved                   |               |                   | 5,418          |                        | 74,085         |                      |                 |                          |
| CHP, MMBtu saved                 |               | 5                 | 513,054        |                        | 7,015,807      |                      |                 |                          |
|                                  |               |                   |                |                        |                |                      |                 |                          |
| emissions                        | VOC           | NOx               | PM2.5          | GHGs                   | VOC            | NOx                  | PM2.5           | GHGs                     |
| <b>emissions</b><br>NG used      | <b>VOC</b> 57 | <b>NO</b> x<br>87 | <b>PM2.5</b> 3 | <b>GHGs</b><br>114,145 | <b>VOC</b> 774 | <b>NO</b> x<br>1,195 | <b>PM2.5</b> 38 | <b>GHGs</b><br>1,560,892 |
|                                  |               |                   |                |                        |                | _                    |                 |                          |
| NG used                          | 57            | 87                | 3              | 114,145                | 774            | 1,195                | 38              | 1,560,892                |
| NG used<br>MWh generated, offset | 57<br>0       | 87<br>-1          | 3<br>-1        | 114,145<br>-87,396     | 774<br>-2      | 1,195<br>-9          | 38<br>-13       | 1,560,892<br>-945,965    |

note a: criteria pollutant emissions reported in short tons; GHGs reported in metric tons note b: a positive number indicates net positive emissions compared to the baseline



|   | 1 |          |            |
|---|---|----------|------------|
| 1 |   | Overview | of Project |

- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments



|   | 1 |          |            |
|---|---|----------|------------|
|   |   |          |            |
| 1 |   | Overview | ot Project |
| _ |   | Overview |            |

- 2 Overview of SGIP
- 3 Methodology & Approach
- 4 Preview of Results
- 5 Presentations from JFA and Rumla
- 6 Questions & Comments

